

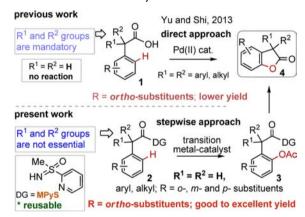
Pd(II)-Catalyzed ortho-C—H Oxidation of Arylacetic Acid Derivatives: **Synthesis of Benzofuranones**

Raja K. Rit, M. Ramu Yadav, and Akhila K. Sahoo*

School of Chemistry, University of Hyderabad, Hyderabad-500046, India

Supporting Information

ABSTRACT: Pd(II)-catalyzed ortho-C-H acetoxylation of arylacetic acid derivatives is demonstrated with the aid of a novel S-methyl-S-2pyridylsulfoximine (MPyS) directing group (DG). The α -mono- and α -unsubstituted arylacetic acid derivatives were readily employed in the *ortho-*C–H acetoxylations. The oxidation products are hydrolyzed, and the MPyS-DG is easily recovered, providing ready access to ohydroxyarylacetic acids. 3-Mono- and 3-unsubstituted benzofuranones are synthesized from o-hydroxyarylacetic acids.


broad substrate scope
$$R^1$$
 DG R^2 R^3 R^4 R^4

ransition-metal-catalyzed C-H bond functionalization has emerged as a useful, step-economical method for the direct conversion of C-H bonds proximal to the directing group, to C-C and C-heteroatom bonds with high regioselectivity. Of note, the oxidation of aryl-C(sp²)-H to aryl-C(sp²)-O bonds allows the synthesis of structurally diverse and pharmaceutically important phenol derivatives from readily accessible starting materials.^{2,3} Due to the broad utility of phenol derivatives, the development of effective strategies for the C(sp²)-H oxidations is desirable.⁴ Aryl carboxylic acids and their derivatives efficiently assist in creating aryl- $C(sp^2)$ -O bonds; in contrast, the oxidation of o-C(aryl)-H bond on arylacetic acid through C-H activation is less explored.3h

Benzofuranone is an important skeleton widely present in various natural products and biologically active molecules. The following methods, including (I) condensations of 2-(2-hydroxyphenyl)acetic acid, 6a-c (II) tandem Friedel–Crafts/ condensations of phenol with α -hydroxy acid, ^{6d} (III) oxidation of boronic acids and their derivatives,7 and (IV) transitionmetal-catalyzed coupling reactions of phenol derivatives, have successfully been employed, accessing the benzofuranone skeletons. Recently, the Yu9a and Shi9b groups have independently developed Pd(II)-catalyzed direct cyclization of arylacetic acids for the synthesis of 3,3-disubstituted benzofuranones (Scheme 1). On the basis of the Thorpe-Ingold effect, the α,α' -disubstituted arylacetic acids exclusively participated in the cyclization by activating the ortho-aryl-C-H bond (Scheme 1). However, the application of these methodologies to the synthesis of 3-mono- and 3-unsubstituted benzofuranones has thus far been unsuccessful.9 Furthermore, the para- and meta-substituted arylacetic acids underwent cyclizations efficiently, whereas the ortho-substituted arylacetic acids reacted sluggishly, delivering poor yield of the benzofuranones (Scheme 1).

Our recent accomplishments on the methylphenylsulfoximine (MPS) and methyl-2-pyridylsulfoximine (MPyS) reusable DG-assisted aryl-C(sp²)-O and primary β -C(sp³)-O

Scheme 1. Synthesis of Benzofuranones via Metal-Catalyzed ortho-C-H Activation of Arylacetic Acid Derivatives

bond formations inspired us to envisage the synthesis of structurally diverse benzofuranone from arylacetic acid derivatives following the acetoxylation of the aryl- $C(sp^2)$ -H bond and lactonization sequence (Scheme 1). 10 Furthermore, we intend to achieve the oxidation of the aryl-C(sp²)-H bond of ortho-substituted and α -unsubstituted arylacetic acids (Scheme 1). Herein we demonstrated the Pd(II)-catalyzed MPyS-DG-assisted ortho-C-H acetoxylation of arylacetic acid derivatives and the synthesis of 3-unsubstituted benzofuranones.

A wide array of phenylacetic acid derivatives having monoand bidentate DGs were synthesized and subjected to the known ortho-aryl-C-H oxidation conditions comprising Pd- $(OAc)_2$ (10 mol %) and $K_2S_2O_8$ (1.5 equiv) in AcOH at 50 °C (Scheme 2).11 The monodentate directing groups -NHOMe and -NHC₆H₄-4-NO₂ on phenylacetic acid (1a) did not oxidize the ortho-aryl-C-H bond; surprisingly, the -NHC₆F₅

Received: December 20, 2013 Published: January 30, 2014

968

Organic Letters Letter

Scheme 2. Screening of Different Directing Groups

and MPS DGs allowed formation of the desired *ortho-C*–H acetoxylation products in <10 and 28% yields, respectively (Scheme 2).¹¹

To our disappointment, the bidentate DGs 8-amino quinoline, 2-thiomethyl aniline, and 2-picolyl amine attached phenylacetic acid derivatives failed to yield the corresponding *ortho*-aryl-C–H oxidation products. To our delight, the recently developed MPyS-DG assists introducing an acetoxy group at the *ortho*-aryl-C–H bond in phenylacetic acid moiety, delivering the desired *N*-[2-(2-acetoxyphenyl)acetyl]-S-methyl-S-2-pyridylsulfoximine (3a) in 58% yield. Further screening of the catalysts, oxidants, and solvents led to the finer optimized conditions [2a (1.0 equiv) in the presence of Pd(OAc)₂ (10 mol %), K₂S₂O₈ (1.2 equiv) in 1:1 mixture of AcOH and Ac₂O at 50 °C], producing 3a in 76% isolated yield (eq 1).¹¹

The optimized conditions shown in eq 1 were explored by examining the scope and generality of the o-C-H acetoxvlations on compounds 2a-x, and the results are summarized in Scheme 3. The lower yield encountered in the C-H oxidation of ortho-substituted arylacetic acids provoked us to investigate the ortho-C-H acetoxylation of MPyS-DG containing arylacetic acid derivatives (2b-f), at first. Gratifyingly, the acetoxylated product 3b was isolated in 97% yield from electron-rich 2-o-tolylacetic acid derivative 2b. The synthetically important chloro- and bromo-group-substituted 2c and 2d underwent acetoxylation smoothly to produce 3c and 3d in 95 and 70% yields, respectively. Strong electron-withdrawing groups CO₂Me (2e) and NO₂ (2f) on the aryl ring surprisingly did not affect the reaction outcome, and the desired acetoxylation products were isolated in excellent yields. The α -naphthyl derivative **2g** gave 87% of **3g**. The regioselectivity in the C-H acetoxylation was evaluated by submitting the metasubstituted arylacetic acid derivatives to the optimized conditions. A highly regioselective ortho-acetoxylation occurred on the sterically less hindered side of the aryl ring in m-Me (2h), m-OMe (2i), m-Cl (2j), and m-F (2k) substituted arylacetic acids; the corresponding products were isolated in high yields [3h (89%), 3i (85%), 3j (89%), and 3k (74%)]. 11 The m-O-benzyl group on the aryl ring did not affect the reaction; the acetoxy group was inserted at the less hindered side, producing 31 in moderate yield. Similarly, the 2-(β naphthyl)acetic acid derivative 2m gave the desired acetoxylated product 3m in 84% yield. The ortho-acetoxylated products

Scheme 3. Acetoxylation of Arylacetic Acid Derivatives a,b

"Reaction conditions: **2** (0.5 mmol), $Pd(OAc)_2$ (10 mol %), $K_2S_2O_8$ (0.6 mmol), $AcOH/Ac_2O$ (3.0 mL, 1:1) at 50 °C. ^bIsolated yields.
'Reaction was conducted using 0.25 mmol of **2**. ^dA trace amount (<5%) of sterically hindered o-C-2-acetoxylation product was formed.
'Reaction was conducted with 0.3 mmol of **2p**. ^fHeated at 80 °C. ^gAcOH was used as solvent.

3n-q and 3a were successfully obtained in good yields from the *para*-substituted and electron-neutral phenylacetic acid derivatives 2n-q and 2a, respectively. The sterically hindered 2-(3,5-difluorophenyl)acetic acid derivative 2r led to 66% of 3r.

The effect of the α -substituent on arylacetic acid derivative toward the o-C-H acetoxylations was studied next. The acetoxylation of α -methyl (2s), α -phenyl (2t), and α -iso-propyl (2u) substituted compounds occurred smoothly to produce 3s, 3t, and 3u in moderate to good yields. ¹² Ibuprofen is an anti-inflammatory drug; ¹³ the MPyS bearing ibuprofen 2v is acetoxylated to afford 3v in good yield. The α , α '-disubstituted cyclopropyl (2w) ¹² and cyclopentyl (2x) compounds were independently reacted under the optimized conditions, giving 76 and 82% of 3w and 3x, respectively.

The synthetic utility of this method is demonstrated with the hydrolysis of the acetoxylation products; this would lead to the *o*-hydroxyarylacetic acids, a precursor to benzofuranones, and the recovery of the MPyS DG (Table 1). ^{10,14} Hydrolysis of the acetoxylated products 3 with 2 N HCl occurred smoothly. Accordingly, the *o*-hydroxyarylacetic acids 4'a–d were prepared from the hydrolysis of 3a, 3f, 3m, and 3v, respectively. Subsequently, lactonizations of 4'a–d in the presence of POCl₃ in ClCH₂CH₂Cl delivered 3,3-unsubstituted benzofuranones 4a–c and ibuprofen derivative 4d in overall good isolated yields (entries 1–4, Table 1).

We next performed the *o*-acyloxylation of **2b** using different carboxylic acid solvent. The carboxylate group CD₃COO— or EtCOO— was smoothly incorporated by replacing the *o*-C—H bond leading to **5a** (82%) and **5b** (76%) (Scheme 4). The acid

Organic Letters Letter

Table 1. Removal of MPyS-DG and Lactonization^a

^aReaction conditions: (i) 3 (0.25 mmol), 3.0 mL of 2 N HCl at 70 °C; (ii) POCl₃ (5.0 equiv). ^bIsolated yield of benzofuranones (4) over two steps. ^cIsolated yields of MPyS.

solvent presumably serves as the source of oxygen for the C–O bond formation.

Scheme 4. Acyloxylation of Arylacetic Acid Derivative

Based on the preliminary mechanistic study and previous reports, a plausible mechanistic cycle is proposed in Scheme 5. The activation of the *ortho*-C-H bond of **2a** by the Pd(II) catalyst through concerted metalation deprotonation (CMD) leads to cyclometalated species **6**. A controlled H/D scrambling study reveals the reversible nature of C-H activation under the present catalytic cycle **(2i-H/D)**. The oxidation of the

Scheme 5. Plausible Mechanistic Cycle

Pd(II) species in 6 to Pd(IV) in 7 occurs smoothly with $K_2S_2O_8$ in AcOH. ¹⁶ Finally, the reductive elimination of 7 produces the desired acetoxylated product 3a.

The competition experiments were performed to study the electronic effect of the substituents on the aryl ring (Scheme 6).

Scheme 6. Competition Experiments

The reaction of an equimolar mixture of **2b** and **2f** under the optimized conditions gave **3b** and **3f** in overall 39% yield in a 19:1 ratio. Similarly, a 6:1 mixture of **3i** and **3j** was observed from **2i** and **2j** in overall 43% yield. It appears that the electron-donating substituents on arenes allow faster reaction over the electron-deficient arenes.

To show the strength of MPyS DG, the acetoxylation of carbamate 8 and urea 10 derivatives was independently conducted under the optimized conditions. The corresponding C–H acetoxylation products 9 and 11 were isolated in moderate yield (Scheme 7).

Scheme 7. Acetoxylation of Carbamate and Urea Derivatives

In conclusion, we have developed a novel MPyS directing group assisted Pd(II)-catalyzed *o*-acetoxylation of arylacetic acid derivatives with broad substrate scope. The oxidation of *o*-substituted arylacetic acids gave excellent yields of the desired *o*-C-H acetoxylation products. The acetoxylated products are successfully hydrolyzed to *o*-hydroxyarylacetic acid, an effective precursor to benzofuranones, and MPyS directing group in good yields. Using this protocol, the 3-mono- and 3-unsubstituted benzofuranones are readily synthesized. Current effort is directed at exploring the synthetic applications of this transformation.

ASSOCIATED CONTENT

S Supporting Information

Detailed experimental procedures and spectra. This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author

*E-mail: akhilchemistry12@gmail.com; akssc@uohyd.ernet.in.

Organic Letters Letter

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This research was supported by the DST (Grant No. SR/S1/OC-34/2009). R.K.R. and M.R.Y. thank CSIR, India, for a fellowship. We thank Mr. K. Ghosh (University of Hyderabad) for his help.

REFERENCES

- (1) For recent reviews on C-H functionalization, see: (a) Godula, K.; Sames, D. Science 2006, 312, 67. (b) Alberico, D.; Scott, M. E.; Lautens, M. Chem. Rev. 2007, 107, 174. (c) Beccalli, E. M.; Broggini, G.; Martinelli, M.; Sottocornola, S. Chem. Rev. 2007, 107, 5318. (d) Ackermann, L.; Vicente, R.; Kapdi, A. R. Angew. Chem., Int. Ed. 2009, 48, 9792. (e) Daugulis, O.; Do, H.-Q.; Shabashov, D. Acc. Chem. Res. 2009, 42, 1074. (f) Mkhalid, I. A. I.; Barnard, J. H.; Marder, T. B.; Murphy, J. M.; Hartwig, J. F. Chem. Rev. 2010, 110, 890. (g) Sun, C.-L.; Li, B.-J.; Shi, Z.-J. Chem. Commun. 2010, 46, 677. (h) Cho, S. H.; Kim, J. Y.; Kwak, J.; Chang, S. Chem. Soc. Rev. 2011, 40, 5068. (i) Engle, K. M.; Mei, T.-S.; Wasa, M.; Yu, J.-Q. Acc. Chem. Res. 2012, 45, 788. (j) Neufeldt, S. R.; Sanford, M. S. Acc. Chem. Res. 2012, 45, 936. (k) Li, B.-J.; Shi, Z.-J. Chem. Soc. Rev. 2012, 41, 5588. (l) Thirunavukkarasu, V. S.; Kozhushkov, S. I.; Ackermann, L. Chem. Commun. 2014, 50, 29.
- (2) (a) Tyman, J. H. P. Synthetic and Natural Phenols; Elsevier: New York, 1996. (b) The Chemistry of Phenols; Rappoport, Z., Ed.; Wiley: Chichester, UK, 2003.
- (3) For transition-metal-catalyzed C-H oxidation of arenes, see: (a) Henry, P. M. J. Org. Chem. 1971, 36, 1886. (b) Yoneyama, T.; Crabtree, R. H. J. Mol. Catal. A 1996, 108, 35. (c) Dick, A. R.; Hull, K. L.; Sanford, M. S. J. Am. Chem. Soc. 2004, 126, 2300. (d) Kalyani, D.; Sanford, M. S. Org. Lett. 2005, 7, 4149. (e) Desai, L. V.; Malik, H. A.; Sanford, M. S. Org. Lett. 2006, 8, 1141. (f) Chen, X.; Hao, X.-S.; Goodhue, C. E.; Yu, J.-Q. J. Am. Chem. Soc. 2006, 128, 6790. (g) Wang, G.-W.; Yuan, T.-T.; Wu, X.-L. J. Org. Chem. 2008, 73, 4717. (h) Desai, L. V.; Stowers, K. J.; Sanford, M. S. J. Am. Chem. Soc. 2008, 130, 13285. (i) Muniz, K. Angew. Chem., Int. Ed. 2009, 48, 9412. (j) Gou, F.-R.; Wang, X.-C.; Huo, P.-F.; Bi, H.-P.; Guan, Z.-H.; Liang, Y.-M. Org. Lett. 2009, 11, 5726. (k) Gu, S.; Chen, C.; Chen, W. J. Org. Chem. 2009, 74, 7203. (1) Zhang, Y.-H.; Yu, J.-Q. J. Am. Chem. Soc. 2009, 131, 14654. (m) Wang, G.-W.; Yuan, T.-T. J. Org. Chem. 2010, 75, 476. (n) Wang, W.; Luo, F.; Zhang, S.; Cheng, J. J. Org. Chem. 2010, 75, 2415. (o) Vickers, C. J.; Mei, T. -S.; Yu, J.-Q. Org. Lett. 2010, 12, 2511. (p) Alonso, D. A.; Nájera, C.; Pastor, I. M.; Yus, M. Chem.-Eur. J. 2010, 16, 5274. (q) Xiao, B.; Gong, T.-J.; Liu, Z.-J.; Liu, J.-H.; Luo, D.-F.; Xu, J.; Liu, L. J. Am. Chem. Soc. 2011, 133, 9250. (r) Wand, L.; Xia, X.-D.; Guo, W.; Chen, J.-R.; Xiao, W.-J. Org. Biomol. Chem. 2011, 9, 6895. (s) Richter, H.; Beckendorf, S.; Mancheño, O. G. Adv. Synth. Catal. 2011, 353, 295. (t) Chernyak, N.; Dudnik, A. S.; Huang, C.; Gevorgyan, V. J. Am. Chem. Soc. 2010, 132, 8270. (u) Huang, C.; Ghavtadze, N.; Chattopadhyay, B.; Gevorgyan, V. J. Am. Chem. Soc. 2011, 133, 17630. (v) Sarkar, D.; Melkonyan, F. S.; Gulevich, A. V.; Gevorgyan, V. Angew. Chem., Int. Ed. 2013, 52, 10800. (w) Chan, L. Y.; Meng, X.; Kim, S. J. Org. Chem. 2013, 78, 8826.
- (4) (a) Enthaler, S.; Company, A. Chem. Soc. Rev. 2011, 40, 4912. (b) See also ref 1.
- (5) (a) Harrowven, D. C.; Lucas, M. C.; Howes, P. D. Tetrahedron **2001**, 57, 791. (b) Srikrishna, A.; Lakshmi, B. V. Tetrahedron Lett. **2005**, 46, 7029.
- (6) (a) Morrison, B. J.; Musgrave, O. C. *Tetrahedron* **2002**, *58*, 4255. (b) Venkateswarlu, S.; Panchagnula, G. K.; Guraiah, M. B.; Subbaraju, G. V. *Tetrahedron* **2005**, *61*, 3013. (c) Pertíno, M. W.; Theoduloz, C.; Rodriguez, J. A.; Yáñez, T.; Lazo, V.; Schmeda-Hirschmann, G. *J. Nat. Prod.* **2010**, *73*, 639. (d) Chen, L.; Zhou, F.; Shi, T.-D.; Zhou, J. *J. Org. Chem.* **2012**, *77*, 4354.
- (7) (a) Molander, G. A.; Cavalcanti, L. N. J. Org. Chem. 2011, 76, 623. (b) Zhu, C.; Wang, R.; Falck, J. R. Org. Lett. 2012, 14, 3494.

- (8) (a) Satoh, T.; Tsuda, T.; Kushino, Y.; Miura, M.; Nomura, M. J. Org. Chem. 1996, 61, 6476. (b) D'Souza, D. M.; Rominger, F.; Müller, T. J. J. Angew. Chem., Int. Ed. 2005, 44, 153. (c) Matsuda, T.; Shigeno, M.; Murakami, M. Org. Lett. 2008, 10, 5219. (d) Sue, D.; Kawabata, T.; Sasamori, T.; Tokitoh, N.; Tsubaki, K. Org. Lett. 2010, 12, 256.
- (9) (a) Cheng, X.-F.; Li, Y.; Su, Y.-M.; Yin, F.; Wang, J.-Y.; Sheng, J.; Vora, H. U.; Wang, X.-S.; Yu, J.-Q. *J. Am. Chem. Soc.* **2013**, 135, 1236. (b) Yang, M.; Jiang, X.; Shi, W.-J.; Zhu, Q.-L.; Shi, Z.-J. *Org. Lett.* **2013**, 15, 690
- (10) (a) Yadav, M. R.; Rit, R. K.; Sahoo, A. K. *Chem.—Eur. J.* **2012**, *18*, 5541. (b) Rit, R. K.; Yadav, M. R.; Sahoo, A. K. *Org. Lett.* **2012**, *14*, 3724
- (11) For more details, see the Supporting Information.
- (12) The $C(sp^3)$ -H/N-Me acetoxylation or the cyclopropyl cleaved products are not observed.
- (13) Marasco, W. A.; Gikas, P. W.; Azziz-Baumgartner, R.; Hyzy, R.; Eldredge, C. J.; Stross, J. Arch. Intern. Med. 1987, 147, 2107.
- (14) (a) Ihara, H.; Suginome, M. J. Am. Chem. Soc. 2009, 131, 7502.
 (b) Ano, Y.; Tobisu, M.; Chatani, N. J. Am. Chem. Soc. 2011, 133, 12984.
 (c) Leow, D.; Li, G.; Mei, T.-S.; Yu, J.-Q. Nature 2012, 486, 518
- (15) The C-H deuteration proceeds presumably by the electrophilic D⁺ quenching of the aryl-Pd(II) complex obtained through *o*-C-H activation, whereas Pd(II)-Pd(IV) species likely participate in the acetoxylation of the *o*-C-H bond. See: Ma, S.; Villa, G.; Thuy-Boun, P. S.; Homs, A.; Yu, J.-Q. *Angew. Chem., Int. Ed.* **2012**, *53*, 734.
- (16) (a) Dick, A. R.; Kampf, J. W.; Sanford, M. S. J. Am. Chem. Soc. **2005**, 127, 12790. (b) Racowski, J. M.; Dick, A. R.; Sanford, M. S. J. Am. Chem. Soc. **2009**, 131, 10974. (c) Powers, D. C.; Xiao, D. Y.; Geibel, M. A. L.; Ritter, T. J. Am. Chem. Soc. **2010**, 132, 14530.